Heat kernel upper bounds for symmetric Markov semigroups

نویسندگان

چکیده

It is well known that Nash-type inequalities for symmetric Dirichlet forms are equivalent to on-diagonal heat kernel upper bounds the associated Markov semigroups. In this paper, we show both imply (and hence to) off-diagonal under some mild assumptions. Our approach based on a new generalized Davies' method. results extend of [6] with power order considerably and also [26] second differential operators complete non-compact manifold.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Upper Bounds for the Heat Kernel on Arbitrary Manifolds

The history of the heat kernel Gaussian estimates started with the works of Nash [25] and Aronson [2] where the double-sided Gaussian estimates were obtained for the heat kernel of a uniformly parabolic equation in IR in a divergence form (see also [15] for improvement of the original Nash’s argument and [26] for a consistent account of the Aronson’s results and related topics). In particular, ...

متن کامل

Heat Kernel Upper Bounds for Interacting Particle Systems

We show a diffusive upper bound on the transition probability of a tagged particle in the symmetric simple exclusion process. The proof relies on optimal spectral gap estimates for the dynamics in finite volume, which are of independent interest. We also show off-diagonal estimates of Carne-Varopoulos type. MSC 2010: 82C22, 35B65, 60K35.

متن کامل

Upper and lower bounds of symmetric division deg index

Symmetric Division Deg index is one of the 148 discrete Adriatic indices that showed good predictive properties on the testing sets provided by International Academy of Mathematical Chemistry. Symmetric Division Deg index is defined by $$ SDD(G) = sumE left( frac{min{d_u,d_v}}{max{d_u,d_v}} + frac{max{d_u,d_v}}{min{d_u,d_v}} right), $$ where $d_i$ is the degree of vertex $i$ in graph $G$. In th...

متن کامل

Heat Kernel Upper Bounds on Long Range Percolation Clusters

In this paper, we derive upper bounds for the heat kernel of the simple random walk on the infinite cluster of a supercritical long range percolation process. For any d ≥ 1 and for any exponent s ∈ (d, (d + 2) ∧ 2d) giving the rate of decay of the percolation process, we show that the return probability decays like t− /s−d up to logarithmic corrections, where t denotes the time the walk is run....

متن کامل

Upper bounds for the dimension of moduli spaces of curves with symmetric Weierstrass semigroups

We present an explicit method to produce upper bounds for the dimension of the moduli spaces of complete integral Gorenstein curves with prescribed symmetric Weierstrass semigroups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2021

ISSN: ['0022-1236', '1096-0783']

DOI: https://doi.org/10.1016/j.jfa.2021.109074